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HYBRID SIMULATIONS OF
ENERGY- AND SPACE-DEPENDENT CORE DYNAMICS

by

J. C. Carter, N. F. Morehouse,
L. W. Amiot, and F. J. Maletich

ABSTRACT

A small and relatively slow hybrid computer has been
assembled for the purpose of gaining experience and evaluat-
ing the potential of simulating large mathematical models
of reactor systems.

The first simulation presented is a model consist-
ing of the two-group, space- and time-dependent neutron-
diffusion equations with delayed groups, two-dimensional heat
transfer in each of three core regions, and reactivity feed-
backs from each region due to Doppler effect and changes in
the physical properties of fuel and coolant. The cylindrical
volume of a 1000-M We fastreactor is divided into five radial
increments and six axial increments. Coupling between ra-
dial and axial increments is by heat flow and neutron diffusion.

The solution over the volume of the core is achieved
by multiplexing equations and by using iterative techniques.
The equations are written to define average values of vari-
ables within the volume of each increment of the cylindrical
core. At each axial increment, the reactivity feedback re-
sulting from a forced variation of an energy-, space-, and
time -dependent variable, such as the fission cross section
in a given geometric increment, is calculated and stored in
the computer memory. The exit values of the variables from
the first axial increment become the initial value to the second
axial increment, and so on until the volume of the core is
covered. The calculation is repeated until convergence is
achieved.

The responses of the model to perturbations of time-
dependent variables in a given energy group or space mode
are presented and analyzed. These perturbations are in the
form of impulses, steps, ramps, and oscillations in the neu-
tron production or in any other variable in the equations com-
prising the model of the reactor system.



I. INTRODUCTION

The dynamic system of a 1000-M W fast reactor is simulated on a

hybrid computer. This system consists of three catt.sgories of physiaif
phenomena--neutronic, thermodynamic, and mejchamcal. The sour‘c
power is in the neutronic category, the sink is in the thelrmodynanuc
category, and the restraints are imposed by the mechanical category

of phenomena.

After a disturbance in the system, the neutrons redistribute in

energy, space, and time. The system may regain equilibrium.if the
feedbacks from the thermodynamic and mechanical to neutronic phenc?mena
have been designed to dampen the perturbations. Equilibrium exists in .
all categories of the phenomena occurring in the reactor when the effective

reactivity for the system is equal to 1.

There is a very complex interaction of neutronic, thermodynamic,
and mechanical phenomena within a reactor core. The mathematical
model presented here of the dynamic system, in which these phenomena

interact, is currently very much oversimplified.

The purpose of presenting this simple mathematical model of a
1000-M W fast reactor is to indicate the potentialities of the hybrid
computer for simulating a very large dynamic system in which there are
phenomena with widely varying frequency responses and intricate
coupling.

The emphasis in this first effort is on developing techniques for
(1) handling a small number of energy and volume increments and (2) linking
equations with widely varying frequency characteristics. The relationships
between physical changes in the core and the neutronic variables and the
coupling between energy groups and geometric regions are the aspects
that are oversimplified now. As the limitations on the computer facilities
are extended, the physical changes and coupling can be better represented
and there can be more energy groups and smaller increments of core volume.

Since the response of the neutronic phenomenon is very much faster
than the responses of the thermodynamic and mechanical phenomena, all
time - dependent neutronicequations are simulated on the analog component
of the hybrid, and all thermodynamic and mechanical equations are pro-
grammed to be multiplexed on the digital component.

It is very expensive to simulate a realistic mathematical model of a
reactor core, since the amount of computing hardware and programming



effort rises rapidly when the model consists of more than the point kinetics
and a one-region core.

Theoretically, there is no limitation to increasing the number of
energy groups, the space increments, and the addition of reactor auxiliaries
to the system, except the economic one. When more than one energy group,
more than one core region, and the principal feedbacks are included
in the model, it is necessary to consider the type of computer on which the
model can be most effectively simulated. The types of computers currently
available are the digital, the analog, and the hybrid.

The simulation of large dynamic systems appears to have two trends:
One is toward larger digital computers, and the other is toward hybrid
computers. The hybrid is a combination of analog and digital, wherein
numerical analysis, a knowledge of computers, and programming skill are
substituted for computing hardware.

A brief description of each type of available computer is followed by
a description of the mathematical model of a 1000-MW reactor, the tech-
niques of performing the simulation, the result of perturbing the model, a
general discussion, and the computing program.

II. TYPES OF COMPUTERS
A. Digital

The modern digital computer, developed after 1950, has the ability
to perform arithmetic operations at very high'speeds together with a large,
fast storage capability for storing data and instructions. It thus became
possible to integrate many systems of differential equations by replacing
the infinitesimal operators of integration and differentiation by arithmetic
operators of sufficient accuracy to permit an accurate solution. In theory,
if a digital computer has sufficient speed and computes with numbers that
have enough digits, almost any system of differential equations can be
solved. However, the machines in existence today do not have anywhere near
the capacity to solve some systems of differential equations occurring in
space exploration and proposed reactor simulations. The computer limita-
tions may in many cases be overcome by ingenious programming.

Theoretically, any model can be put on the digital computer, but
with a large amount of programming effort and with the technique of
overlaying. Lack of mathematical rigor in transforming equations and
incompatibility in time incrementation of the equations of the respective
categories often result in truncation errors and instability when the
modular codes to solve these equations are in series and parallel.



B. Analog

one that uses electronic components for the
differentiation, and the arithmetic operations
and division. Before about 1950818
large dynamic systems of

An analog computer is
direct simulation of integration,
of addition, subtraction, multiplication,
was the only type of computer capable of solving
differential equations.

r components necessary for simulating

The large number of compute
odel of a reactor rules out the pure

even the point-kinetics one-region m

analog computer for any larger mathematical models.

GRS Eybrid

A hybrid computer is a combination of the two types of computer
(analog and digital) into a single integrated computing system. Hybrid
computers are new and have potentialities for the simulation of large

dynamic systems of coupled categories of phenomena with widely varying

frequency characteristics.

Since not all systems of differential equations can be solved on
digital computers, and since analog and digital computers employ very
different methods of solving the systems of equations, it is not surprising
that there are equations of interest that can be solved on an analog computer,
but cannot be solved satisfactorily on a digital computer. Therefore, there
came into existence a computer known as a hybrid computer, which combines
an analog and a digital computer into one large integrated computing system.
At present two or three hybrid computers are being sold, but they are still
in their infancy and most of the basic software and computing technique
still remains to be developed. Although solid-state electronics enable the
analog-computer part of a hybrid computer to be entirely controlled from
the digital computer (including patching connections, setting potentiometers,
and checking out the problem). the present hybrid computers fall consid-
erably short of their potential. All the hybrid computers presently on the
market require manual patching, and many require manual checkout and
manually set potentiometers. Consequently, instead of controlling the entire
computer from one digital computer, as would be possible in a "state-of-
the-art system," presently marketed hybrid computers require the pro-
grammer to get involved with the computer hardware. This is currently
the biggest drawback of commercially available hybrids.

Eventually the analog component will be entirely controllable from
the digital components and the mechanics of programming for the hybrid
will be the same as programming for an all-digital computer.



D. Argonne's Hybrid

Argonne's hybrid consists of the existing analog computer and an
IBM 1130 digital computer, which communicate by means of an interface
designed and built at Argonne.

The analog computer consists of two Electronic Associates 131-R
consoles and two Reeves 550 consoles. The entire system has about 300
amplifiers, although much of the equipment is out of date.

The IBM 1130 is equipped with a disk bulk storage, a card-reader
punch, and a line printer. The entire computer is either FORTRAN or
assembly language programmable at the programmer's option.

Although this computer is far from representing the state of the
art, particularly in terms of convenience for the programmer and operator,
it does permit a number of hybrid applications to be developed and tested.

The amount of investigating that has been done indicates that many
reactor simulations can be done effectively on a computer composed of both
analog and digital components, wherein each component is used for the
type of equations for which it is best suited.

III. THE EQUATIONS COMPRISING THE MODEL

The mathematical model of the system consists of the two-group,
space- and time-dependent, neutron-diffusion equations with delayed neu-
trons; two-dimensional heat-transfer equations'in each of three core regions;
and a reactivity-feedback equation relating Doppler effect and temperature
variations in the core materials of each core region to the variables in the
neutron-diffusion equations.

The equations that define the phenomena of the respective categories
have widely varying frequency responses and complex interactions between
those variables that are common to each category. Thus, the attainment of
continuity and compatability in energy, space, and time is difficult to
achieve in a simultaneous solution of all the equations comprising the
mathematical model of the reactor system.

The differencing schemes for the equations comprising the models,
particularly with respect to time, present a formidable task in numerical
analysis and programming in order to couple the equations in one category
to those in another. This can be made easier when the hybrid computer is
used, because the equations with high-frequency response are solved on
the analog components.
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mic system, the character=

f a dyna
e which

d and decisions reached as to

In every simulation of a model
ital components and

istics of each equation must be analyze ;
equations of the model will be programmed for the dig

which equations for the analog components.

The physical arrangement of the reactor core is that. of an a'ssembly of
spaced UO, rods in the form of a right cylinder through which sodium ﬂf)ws
longitudinally. The core is surrounded by a neutron reflector.' Th? radial
and axial regions into which this reactor is divided are showln 1n'F1g.. 1. The
numerical values of the physical phenomena within these cylindrical incre-

ments are the average for the increment.

i FUEL RODS

REFLECTOR
CORE
REFLECTOR
CYLIN:RICAL
% ELEMENT
| 4 | OF THE CORE
3 |
(2] A CROSS SECTION
GRID OF CORE n OF THE CORE

Fig. 1. The Radial and Axial Incrementation of the Core

Figure 2 shows a schematic representation of the basic model. The

energy groups and radial regions are coupled by neutron flux. The axial
regions are coupled by the continuity of the sodium flowing axially along

the fuel rods.

The equations comprising the model are presented here and treated
in detail in Appendix B. They are considered in three categories: the
neutronic, the thermodynamic, and the feedback equations.

A. Neutronic Equations

The two-group neutron-diffusion equations are expressed in the form

1 0B, ;
i = St - Du¥0u - Sid G (1 - PIX112i% 2 ¢y

6
¥ XyvpiSyistiil + D, MkiCkis (1)
k=1
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: e - B)[ X111 Z1ifPri
Lx Othai _ D,;Vi%2i - Sziadei + Ziisbui + (1 - B)[Xzr1iZ1ifPri

6
+ Xp1p1Z2ifP2i] + > AkiCkis
k=1

and

dE 3
—aif = B31ifPri T BzifPei - AkCk- (3)

Since the designations of terms in these equations is fairly compli-
cated, the following method of subscripting the terms should avoid

confusion:

The first subscript is a numeral j = 1 and 2. This numeral is

that of the eneryg group.

The second subscript is @ numeral i = 1, 2, 3, ..., n. This numeral

designates the region of the reactor.

The third subscript is a lowercase letter. This letter designates
the phenomena such as fission, absorption or scattering. For example,
S14a 15 @ macroscopic cross section in energy group 1 andreactor region 4,
and the phenomenon is absorption of neutrons; and ¢,; is neutron flux in
energy group 2 and reactor region 1.

The neutrons are divided into two energy groups. Neutrons of
energy greater than 1.35 MeV are placed in the high energy group, and
neutrons of energy lower than 1.35 MeV are placed in the low energy
group. The fission threshold of 2*%U occurs at 1.35 MeV. The lower and
upper bounds of the two respective groups could be any desired; 1.35 MeV
is just convenient.

X, is the fraction of fission neutrons produced in group 1, and X, the
fraction in group 2.

The absorption cross sections 2 ;, and2,;, contain the fission and
capture cross section. In the absence of a moderator in the case of a
fast reactor, inelastic scattering may be equal to or greater than elastic
scattering.

Since a scattering collision in the low energy group 2 does not
remove neutrons from the group, 5,j5¢,; does not leave energy group 2,
However, the magnitude of 2,is®,i is included in the determination of

the diffusion coefficients.
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The following assumptions are made:

1. The reactor will be divided into a number of regions with
provision for a solution in each region.

2. The energy-dependence will be taken into account by
dividing the energy spectrum into n groups and solving an equation
for each energy group in each region.

3. VDV¢ must be approximated as a function of one space
variable only.

For a unit volume in a homogeneous region,

% = VDV$- Z,6 + S (4)

for one energy group. Since ¢ = nv and D are constant in each region,

99
S¢ = DV - I +s. (5)

4|~

For an arbitrary volume V,

[ oo oo
]]/qus av =[/DV1¢ ds, ' &)

where Vi¢ is the component of V¢ directed toward the outward normal to

But

the surface S.

Since the volume integral of the divergence of the neutron current
can be replaced by the surface integral of the current (i.e.,V @), difficulties
inherent in approximating second derivatives are avoided. This manipula-
tion will also reduce the amount of analog equipment needed.

The solution of Eq. 6 involves an assumption as to the spatial
variation of the flux within each region. The assumption used here is that
there is a linear variation in the flux between the midpoint of a region and

and boundary of that region.

Equation 6 is still three-dimensional, but it may be reduced to
one dimension. The reactor is a cylinder with three annular regions (as
shown in Fig. 1); this means that the flux distribution will be a function



of the radius and the height. If a cosine variation is assumed in the axial
direction, a correction for axial leakage can be added to the absorption loss
Therefore, DV, ¢ can be calculated with respect to one
space variable. The calculation DV,¢ can be done with respect to one space
variable if the axial buckling is assumed.

in each region.

It is now possible to determine the function that will describe the
diffusion between two regions. The subscripts here refer to regions.

Two assumptions are made:

1. Within a region, a linear variation in flux exists from the
center to the boundary (see Fig. 3).

! | |
]
: | i
! | '
: ¢r 4’b : Fig. 3
i | : Regional Neutron
' | : 2 : Flux Coupling
1 [l 1
i | 1
i 2 s
2. At an interface,
a. lim¢(r+e) = lim (r-g);
€0 €0
b. lim D;Vg(r+€) = lim D,y ¢(r - €).
€0 €—>0
In the right semiregion of 1,
2(¢pb - ¢1)
v 0~ .
#lx) = ZZBZ 7 (8)
In the left semiregion of 2,
2(92 - $1)
v T e ——-—
#(x) = B2 lt (9)
According to assumption 2b and Egs. 1 and 2,
dp - ¢ G, -
e et op Wi Bl (10)

Lzt I3 Do



and

op =

DT (11)

Let

Then

_ Di¢, + Di¢,
¢>b 5 Di +D£ g (13)

It is now possible to express D, V¢ as a function of ¢; and ¢, by use of
Eqgs. 8 and 13, as follows:

_ 2D{¢, + D{¢, _ 2DiD;
Dyvg = s ¢ = D—1+—DZ(¢2‘¢1)- (14)

Equation 14 is valid in any interior region for half the region.

The total diffusion L across the interregional boundaries for an
interior region is

2D;.,Dj{ .
15 :[/‘DViQJdSﬁ @1 -¢i-1) Si

, 2DiDiy

S an L 15
D{+D{+1(¢l ¢1+1) Si+ ( )

where Sji is the total surface bounding the left side of region n, and Sj 4,
is the total surface bounding the right side of region i. At an outer
boundary, the inward neutron current is'0. Thus,

The following substitutions can be made in Eq. 9:

a0 = >‘t’

15
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and

dp . _¢n-9p (18)

dr (riq-Ti)/2
The neutron current out of the reactor is

=% _ M dey, (19)

The total leakage out of the reactor is
L = J+ S, = J935,.

In accordance with the above reasoning and assumptions, the
two-group time -dependent diffusion equations are transformed into a set
that can be simulated on an analog computer. The set of equations for
each of the three regions of the core are presented in Appendix B.

B. Thermodynamic Equations

The thermodynamic equations consist of the heat-transfer equations
for the fuel elements and for the coolant. Both the analog and digital
programs for these equations are presented.

1. Heat-transfer Equations Pertaining to a Fuel Element

The heat-transfer equations are written for a cylindrical fuel
cell, shown in Fig. 4. The following are the assumptions:

a. The internal heat-generation rate is symmetric with
respect to the longitudinal axis of the cell, and the materials are isotropic.

b. The axial conduction of heat and the radial variation of
the coolant temperature are neglected.

c. Materials do not have phase changes (fuel melting and
coolant boiling) during transience. Further, there is no large-scale
disassembly of the core.

Under these assumptions, the heat-conduction equations are
written in one-dimensional space--namely, r at positions z along the
longitudinal axis:

cpr % = S?—(Kr%) It e ) (for fuel), (20)
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and
ShE ) oT
cpr I < 5:\KTST ()
(for bond or cladding),
where
T = the temperature,
¢ = the specific heat,
p = the density,
= the thermal conductivity,
% and
q = the internal volumetric
heat-generation rate.
=
I R il The boundary conditions are:
-
oT . :
= = 0 (assuming the material (22)
Sl to be isotropic),
and
-xaa—f L = HTReTO) =a (23)
r=

Fig. 4. Diagram of a Cylindrical where Tg i.s. the temper‘ature at the surface
Fuel Cell of the cladding, and T, is the average coolant
temperature. The surface heat-transfer
coefficient h is a function of temperature and coolant flowrate. Q repre-
sents the heat transferred per second per unit area of the boundary between
the fuel cladding and the coolant.

The rise in coolant temperature for any axial increment may be
obtained by writing the heat-balance equation. This equation, in its
differential form, may be stated as

(pcTe) + —a— (Golic)e=n AD, (24)

=N
ot Jz
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where
p = the density,
c = the specific heat
and
T. = the temperature of the coolant.

C. Feedback Equations

There are a large number of feedbacks in the actual reactor, but in
the system of nonlinear equations considered here to represent the reactor
phenomena, only three are used, and these are in a very rudimentary form.

One is the Doppler feedback, which is inherent in large fastreactors.
It is prompt and nearly always negative. The second most important feed-
back results from changes in fuel density and core dimensions due to fission
heating. The third comes from changes in coolant density, especially the
change associated with boiling. These last two depend upon heat flow and

therefore have time lags. They also are usually negative.

All three feedbacks alter the cross sections and thus the balance
between loss and production as described in the diffusion equations.

Neutrons change in energy levels and spatial position in an
endeavor to maintain neutronic equilibrium in a well-designed reactor.

The neutronic, thermodynamic, and elastic phenomena are coupled
and interact so the reactor cannot be in a steady state (keff = 1) unless all
three are in equilibrium throughout the entire volume of the reactor. Since
the neutronics, thermodynamics, and mechanics are not separate and in-
dependent in a reactor, the equations in the mathematical model describing
the phenomena associated with them must satisfy the conditions for con-
tinuity and conservation of energy transformations.

Neutronic continuity is maintained in energy and in space in the
multigroup diffusion equation. This continuity is maintained by virtue of
the fission spectrum and the up and down scattering. In space, continuity is
maintained by diffusion throughout the volume of the core.

Thermodynamic continuity is maintained by fluid flow and heat
transfer.



Elastic continuity is accomplished by elastic and plastic deformation
of the materials of the reactor. The core structure is statically indeter-
minate; thus the changes in dimensions following perturbation of steady-state
conditions are those compatible with strain-energy equilibrium.

At equilibrium, the production of neutrons throughout the volume of
the core just balances the loss of neutrons by absorption in nonfissionable
material and by leakage out of the core.

A physical change within the core or an outside source of neutrons
can disturb neutronic equilibrium with a consequent change in fission rate,
which in turn disturbs thermodynamic and mechanical equilibrium.

Physical things that affect equilibrium are changes in the tempera-
ture of the core materials, changes in the density of core materials,
changes in the phase of core materials, and mechanical changes. These
in turn affect the cross sections for fission, absorption, scattering, and
transport and constitute a feedback, which, if the core is properly designed,
will be negative and cause the reactor to try to regain equilibrium. The
effect of temperature on those isotopes that have resonances results in the
principal feedback for fast reactors. It is known as the Doppler feedback.
An increase in temperature and the resultant increase in thermal motion
of the nucleus has the effect of broadening the resonance. Uranium-238
has a number of resonances. A large one occurs at 6.5 eV; thus an increase
in temperature causes an increase absorption and a negative feedback.
Uranium-235 has a resonance at 1.1 eV, which causes an increase in
fission rate with an increase in temperature. The negative component of
the Doppler feedback usually predominates. .

The effect of increasing temperature on core materials and coolant
is that of causing them to expand, thus decreasing macroscopic cross
sections but increasing the dimensions and shape of the core. In some
poorly designed reactors, the core tries to assume the shape of a hyperbola;
this is known as the bowing effect.

If the temperature increases above the design level, the fuel may
melt and the coolant boil. The diffusion coefficient varies inversely as the
transport cross section, which is a function of neutron energy.

The cross sections, dimensional changes, and densities are not
expressed as functions of energy and/or temperature in the neutron-
diffusion equation. Instead, the following customary expression for
reactivity feedback is used in this simulation:

ATg
p = a/n 1+_TT e bATf+ cATCy (25)
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ment of the core. When p for the

ai ic incre
where p pertainstoa volumetricl o e
= m on the computer is in equilibrium.

entire volume is 0, the simulated syste

If any cross section or diffusion coefficient is changed, the s.yst.em
in neutron flux of any group at any point in

is perturbed and the variation
: f time on an oscilloscope attached to

the core can be seen as a function o
the computer.

. The relationship between the fission cross sections and keyx has been
established for this simulation by measuring the prompt jumps. Variation
of the fission cross sections as a function of time is the means used to

perturb the simulated system.

IV. COMPUTING TECHNIQUES

Ideally, a hybrid computer should have enough analog and digital
components and enough flexibility among these so that decisions as to how
to arrange the simulation of a mathematical model can be based on logic
and economics. At this stage in the development of the hybrid computer,
this condition rarely exists. The model is usually restricted by the capacity
of the computing system, and the arrangement of the simulation is dictated
by the type of computing components available in the system.

Argonne's hybrid is small, and most of its components are analog.
However, all equations in this model are programmed both for a digital
computer in FORTRAN IV and for an analog computer, thus providing
flexibility, should the hybrid be expanded to include more digital or analog
components.

The limited amount of equipment dictates that both the neutronic and
thermodynamic equations be put on analog components. The present digital
components are used for computing feedback, for storing information, and
for setting the potentiometers of the analog components.

If the Argonne system were large enough, the best way to program
this model would be to put the equations of the thermodynamic phenomena
(which have long time constants) and the feedback equations (which are
algebraic) on the digital components, and the highly nonlinear neutronic
equations (which have relatively very short time constants) on the analog
components.

The technique of simulating this specific mathematical model on
Argonne's hybrid computer differs from one of the previous simulations
contained in a paper by Sanathanan et él.l in that the two-group, space- and
time-dependent diffusion equations are used instead of the one group or
point kinetics.
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The procedure for performing the time-dependent simulation is as
follows:

1. The steady-state conditions associated with the initial power
level desired are determined first.

2. The system of equations defines conditions within the volume of
an axial increment of the cylindrical core. The volume of the core is
covered by multiplexing this system of equations.

3. At each axial increment, the reactivity feedback resulting from
a forced variation of the energy-dependent neutron cross sections is cal-
culated and stored in the computer memory.

4. The exit coolant temperature from the first axial increment
becomes the inlet temperature to the second axial increment, and so on,
until the volume of the core is covered. The axial temperatures are
averaged over a region, and the resulting feedback is calculated. The
calculation is repeated until convergence is achieved. The volumetric
increments are so tightiy coupled that if the sum converges, each of
its parts also converge.

The feedback used on iteration n is calculated from the temperature
distribution computed in run n - 1. Initially, the feedback is set equal to
zero in most cases, but for large steps it is set equal to a large enough
negative value to prevent the neutron flux, during the first iteration, from
becoming excessive.

Since the iteration scheme introduces a fictitious delay equal to the
problem-solution time for the feedback, there arises a possibility of intro-
ducing instabilities into the simulated reactor system due entirely to the
method of computation. Such was found to be the case, and a damping method
was introduced.

One way of overcoming this problem of computational instability is to
use a decelerating factor W, such that 0 < W < 1.

The feedback used in iteration (n+1) = W x feedback computed from
data in iteration (n-1) + (1 - W) feedback computed from data in iteration (n).

W does not affect the convergence, but does damp the functional insta -
bilityas is shownin Figs. 5and 6 where W 1s0.50 and 0.85, respectively.

The 1teration 1s initiated by making an initial guess for the feedback
as a function of time. The corresponding transient neutron flux and the
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temperatures are determined. The digital components of the hybrid com- .
ack concomitant with the temperatures. This
The iterative process is con-
system variables is achieved.

puter now calculate a new feedb
feedback is then used in the next iteration.
tinued until the required convergence of the

N = e g e e e P
e o w0 T L
S | a - STEP - AvEf=0.0001 =
oo b won s & 1000 —  noTes : =
9 e00 = ool C-STEPOF v2f=0.0001 5
= S b - w=0.85
S 400
= S 600 — —
@ 200 x
2 o 400 — —
W o E
3 w 200 —
s 200 o
= a
= s 0
ol 400 &
=
o o 200 —
a2 R ] S S N O e .. e
0 20 30 40 50 60 10 20 30 40 50 60
seconds seconds
Fig. 5. Response of Model to a Step Increase of Fig. 6. Response of Model to a Step Increase of
Fission Cross Section with W = 0.50. Fission Cross Section with W = 0.85,
ANL Neg. No. 113-2639, ANL Neg. No. 113-2631.

The neutron equations are very sensitive to the net amount of reac-
tivity, especially when this amount approaches the value that makes the
reactor prompt critical. Consequently, in the simulation of transients in-
volving the addition of large amounts of reactivity, the domain of con-
vergence becomes restricted; and if the iteration begins with a poor initial
guess of the feedback, a large number of iterations usually are necessary to
achieve convergence. As the neutron lifetime becomes shorter, the sensi-
tiveness of the kinetics equations increases rapidly and the rate of con-
vergence of the iterative process becomes slower. The success of this
scheme for hybrid simulation depends to a large extent upon the rate of
convergence. It therefore becomes imperative to find techniques by means
of which one can guarantee convergence in a relatively small number of
iterations. This is one of the objectives of this first phase of the work.

Another objective is the investigation of the effects of sampling rate.
High sampling rates improve accuracy. However, the digital memory ca-
pacity becomes a limiting factor when long-duration transients have to be
analyzed. Consequently, there is an optimum rate. A relatively small
sampling rate is adequate to represent all the frequency contents in the
temperature response. The feedback corresponding to the temperature
samples is fed into the neutron-diffusion equations, which have a very high
frequency response.

Most of the existing hybrid computers today have small digital memory
capacity. Hence, one is very limited in terms of flexibility in storing programs
and data in the active core. The iterative scheme of this report requires the



facility to store large amounts of data. Also, since the improved method of
simulation facilitates the computation of long-duration transients in a single
stage, the need for the storage space becomes acute. The use of a disk
partially circumvents this difficulty.

Long-duration transients can also be simulated in several stages.
Convergence, then, is achieved in each consecutive stage.

A limited digital memory also makes the investigator search for
minimum sampling rates. A good deal of research has been done to investi-
gate the effect of sampling rates in the D/A and A/D conversions involved
in hybrid computing.! The relative sizes of the sampling intervals have
considerable effect on the accuracy of the computed response of the closed-
loop reactor system, whose categories of phenomena have widely varying
frequency-response characteristics. However, at present, there appears to
be no relatively easy way of analytically determining the minimum adequate
sampling rates.

The system shown in Fig. 2 is in a steady state. The inlet conditions
to each radial increment on the plane Z, are given. An arbitrary change
in any time-dependent variable in any category can be made. The variable
in this simulation is the fission cross sections in core region 1.

The convergence may be illustrated by plotting a number of system
variables against time. In this case, the temperature of the fuel in region
one is used, and the rate and number of iterations are shown onFigs. 5-8.
The forcing function is the fission cross section in the form of jumps,
ramps, and sine waves.
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V. GENERAL DISCUSSION

The outstanding feature of the present method of analyzing the re--
sponse of a closed-loop system is the iterative procedure and the sampling
rate. This allows multiplexing of computer components.

As a result of multiplexing, there is a large saving in analog cir-
cuitry. But for this economy of computer facilities, it frvould not'hav.e been
possible to handle the number of differential equations in even this simple

mathematical model of the reactor core.

The success of the present method of analyzing the response of any
closed-loop system depends essentially upon the convergence of the iter-
ative process. From a practical standpoint, a mathematical proof of con-
vergence alone is not enough. Simulation of typical transients is necessary
to obtain a quantitative estimate of the necessary number of iterations.

The iterative process has facilitated simulation in continuous time
for rather large intervals of time. The length of the time interval is limited
only by practical considerations, such as the available memory, required
sampling rate, and necessary number of iterations for convergence. If the
response needs to be computed for a long interval, this interval may be
subdivided into smaller intervals (whose length is compatible with the
practical limitations) and the response computed sequentially. When con-
vergence depends upon the response time, a large saving in computing time
and memory units is possible by subdividing the response time.

One practical aspect of multiplexing of analog circuitry is the fre-
quent reinitialization of the variables and the modification of the parameters
in the equations. This is accomplished by changing the various potenti-
ometer settings. From experience, the incorporation of an automatic potenti-
ometer setting equipment is of great help. In a completely automated hybrid
computer, it is suggested that the digital component be programmed to effect
the necessary changes in potentiometer settings.

Very few arithmetic operations are done during sample intervals in
the present simulation. Therefore, the speed of the digital computer is not
a limiting factor. Consequently, high-speed analog equipment may be used
to advantage.

The hybrid simulation is proving itself to be effective and economical
in the analysis of transience in normal nuclear-reactor operations and in
hypothetical accident conditions. This simulation can be particularly useful
in the design studies of fast-reactor cores composed of ceramic fuels whose
thermal properties vary significantly with temperature.
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The techniques used in the hybrid simulation are general enough to
be applicable to many dynamic systems with feedback. The advantages of
the techniques increase with the amount of multiplexing and the degree of
complexity in the equations. It is therefore recommended that further
effort be made to demonstrate the applicability of this method of simulation
to other mathematical models composed of nonlinear partial differential
equations.

VI. RESULTS

The simulation of the model upon the computer gives, as a function
of time, the fuel and coolant temperatures and the neutron flux in each
volume increment of the reactor core. When any variable, such as a cross
section or a physical property of core material, is perturbed, the computer
will try to restore the model to the equilibrium of all interacting phenom-
ena. This usually results in a change in power level and temperature
throughout the core. Anything that happens to any variable in the equation
comprising the model affects to some extent all other energy-, space-, and
time-dependent variables in the system. For example, a change in the
reflector material cross sections affects the neutron balance in every
region of the core and in turn affects the power level.

All the variables in the model can be displayed as a function of
time.

Since it was necessary to cover the volume of the core by multi-
plexing the equations common to equidistant bounded planes concentric
with and perpendicular to the longitudinal axis of the core, it was necessary
to converge on some time-dependent variable in the set of equations such
as neutron flux or temperature. In this case, the average temperature of
fuel was the variable upon which convergence was achieved.

A perturbation of the fission cross section in the neutronic equations
of the first core region was the disturbing effect introduced into the system.
The perturbations were in the form of a step, a ramp, and a sine wave.

Figure 5 shows the convergence characteristics in response to a step
change in the fission cross section of core region No. 1. Since the feedback
for iteration n was computed from the temperatures resulting from
iteration n - 1, there is some instability due to overcorrection resulting
from the time span of the calculation.

Figure 6 shows how an increase in the value of W from 0.50 in
Fig. 5 to 0.85 reduces the instability and also reduces the number of
iterations required to achieve convergence.
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Figure 7 shows how the system converges after a ramp change in the

fission cross sections of region 1.

erges after the initiation of a

Figure 8 shows how the system conv
n cross sections of region one.

sinusoidal variation in the value of the fissio

Rather long run times were chosen, since one purpose of the cal-
culation was a desire to see if a kinetics model that was capable of giving
good short-time dynamic accuracy could also be made stable over rather

long time intervals.

VII. CONCLUSIONS

Currently the hybrid computers are beginning to show potentialities
for the simulation of nuclear-reactor transients. This is due to the following
features, characteristic of any hybrid system:

1. The ease and efficiency of simulating a large set of nonlinear
differential equations of the model.

2. A low probability of numerical instabilities, which are frequently
a source of anxiety in the pure digital simulation of coupled partial dif-
ferential equations.

3. Simplicity of programming.

4. Economy resulting from a substantial reduction of the expensive
hardware; and programming effort.



APPENDIX A

Nuclear and Heat-transfer Data

1. Nuclear Data

a. Two-group Constants

Group l--Energy 1.35 MeV to »

X, = 0.575
Isotope v of Os Otr O1s2
28py 3.10 1.95 0.10 4.6 0.90
=E] 2.7 1.29 0.08 4.5 1.50
E8T 2.6 0.524 0.036 4.6 2.05
Fe = 2 0.005 2.0 0.70
Na = - 0.0005 2.0 0.30
Al = = 0.004 8 0.38
Group 2--Energy 0 to 1.35 MeV
X = 0.425
2 en 2.93 1.78 0.30 7.0 -
201 2.5 1.44 0.28 T =
2B 2.47 0.005 0.19 78] =
Fe = = 0.006 2.8 3
Na = = 0.0008 3.5 =
Al 3 = 0.002 3.5 E
b. Macroscopic Cross Sections
(1) Core Region--Group 1
Isotope % Vol atoms/cc % 10758 Za Zf P Str
) 15.07 0.0473 0.0149 0.0092 0.0107 0.0321
25 1.13 0.0473 0.0003 0.0003 0.0011 0.0025
(o) 16.20 0.0919 0 0 0.0566 0.0499
Na 54.87 0.0254 0 0 0.0042 0.0279
SS v2 03 0.0847 0.0075 0.0216
0.0152 0.0095 0.0801 0.1340

Di,i = 0.2488



(2) Core Region--Group 2

Isotope % Vol atom s/cc 5% 2 S¢ E e
Zelg) 15.07 0.0473 0.0123 0.0103 0.0513
Y 1.13 0.0473 0.0001 0.0038
o) 16.20 0.0919 0.0499
Na 54.87 0.0254 0.0488
SS 12.73 0.0847 0.0302

0.0124 0.0103 0 0.1840
Dy = e

(3) Reflector--Group 1

Be 70.00 0.01229 0.4646 0.4302
Na 20.00 0.0254 0.0015 0.0102
Ss 10.00 0.0847 0.0059 0.0169

e 0 - 04720 D25

D,; = 0.7289

(4) Reflector--Group 2

Be 70.00 OR0R229 0.4646 0.4302
Na 20.00 0.0254 000N BEENOROII0Z
SS 10.00 0.0847 00059 00168

0.4720 10,4573
D,,; = 0.7289

c. Delayed Neutron

Group D t; B; Bit; (€
1 1.5 s= 052 0 76 .GRE0 7.62 % 105> 058610 N0 1S
7 B0 s UTE Sl Gl 6.27 = 107* 1.997 x 1072  4.22 x 10*
3 IS 6 1 05E 7.3529 5.61 x 10748 250 02 ol (0
4 3.4 x 107! 2.9412 1.06 x 10=2 3,118 = 1105 2 0N6cE0 108
5 1.32 0.75/6" 458 x 1054 S B3N63 6 N0E N0 7O U
6 25 0.2857 3.5 x 10~ =S 1N0008S10F SRR 02IE-SI08
=l 28 ] O Zp; = 0.003154

When the six groups of delayed neutrons are reduced to one group,
C, = 70,900.



2. Heat-transfer Data

Specific heat of sodium
Density of sodium

Specific heat x density
of UOZ

Density of UO,

Specific heat of UO,
Thermal conductivity UO,
Temperature of sodium
Heat-transfer coefficient
Radial increment

Mass flow of sodium
Axial increment

Circumference of rod
Flow area

Velocity of coolant
Length of rod
Diameter of rod
Diameter of cladding

Cladding thickness

(6] == L s

1520
09712

3.45
10.8

0.32

0.03

500°K (inlet)
5.67

0.060

400

1.5

1.0
635.77
150.0
0.548
0.635
0.039

29

W—sec/g S
g/cm?

J/cm3 SIS
g/cm’
W—sec/g °K
W/cm S
°K

W/cm K
cm
g/cm?-sec

cm

cm"‘/cm3
crn/sec
cm

cm

cm

cm
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APPENDIX B

Computing Programs

1. Analog Program

a. Neutron-diffusion Equations

The neutron-diffusion equations (Egs. 1-3) are transformed for
the analog as follows. The analog diagram of these equations is shown in
1T, o)

(1) Core Region 1--Group 1

Region radii = 0 to 40 cm Region length = 150 cm

d D 1S
L1 = - 11,2V, (©1,0=P12) - (Zy, 1,2+ 2,1,5 D) 1B5)(v1,191,1)
dt N ; : : i

+ (X1,0v1,0) (V1,1 21,1,£0 P10 tV2,122,1,£,D2,1)

= (ABXI,OVI,1)(v1,lz’l,1,f0®l,l 1 Vz,lzz,l,focbz,l) + (X1,0v1,1)(M,1Cy)
+ (Xy,0v1, )81 1 2 15Dy 1+, 135 1 6D, ) (B.1)

(2) Core Region 1--Group 2

do, , 2,,15,1v2,1
dt’ = = (@3, - d’z,z) = (55 1 e 2 g = 15 D ) v2,192,1
0,1

T2 y,sVin® t (Xz,on,l)(V1,1Zl,l,foq’l,l + Yy 122,1.£ 95 1)
LE %2,
= (IBXZ,OVZ,I)(VI,IZl,l,focbl,l+VZ,IZZ,1,fO®2,l) + (Xz,0v2,1) (M1 Cy)

+ (Xz,0v2,1)(A01,121,1,£01,1 +0V2 1551 1D, ). (B.2)

(3) Core Region 1--Delayed Neutrons

dC,
T R V2,122,1,i8%;,1 - AC,. (B.3)
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(Zufdy+ 2,14,

(Z" f¢ll i 2z|¢z|)

(Zif Pt 220l )'

:D :(2l2f¢lz+ 2zzfd’zz)‘,

Fig. 9. Analog Diagram of the Diffusion Equations
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d@l’z —E

(4) Core Region 2--Group 1

Region radii = 40 to 50 cm Region length = 150 cm

Sp 2V
&,,15,2V1,2 (®1,z'©1,1) _ 21,250,2V1,2 (@ 2-9,5)

dt

dé;,.
dt

Vo,2 Vi,2

- (21,2,a* Z1,2,s t D1,2 B2)(v1,2%,2)

ar (X1,zvl,z)(Vl,zzl,z,focpl,z+Vz,zzz,z,fo¢’z,z)

= (ﬁxl,z‘h,z)(vl,zZl,z,foq’l,z+Vz,2zz,z,fo®z,z)

+ (X1,2v1,2)(M,2C12) + (Xl,zvl,z)(Avl,ZZl,z,foq)l,l +V5,222,2,£% 2)-

(5) Core Region 2--Group 2

v 2,253V
L B
0,2 0,2

)

- (22,2,at 22,2,5stD; 2 BZZ)(Vz,zq)z,z + 21 5,5v2,29,2)

+ (XZ,ZVZ,Z)(VI,ZZI,Z,fo(Dl,Z+UZ,ZZZ,Z,fO®2,2)

= (ﬁxz,sz,z)(Vl,zzl,z,fo(bl,z+Vz,zzz,z,fo®z,z)

ir (XZ,ZVZ,Z)O‘Z,ZCZ,Z)"'(XZ,ZVZ,Z)(Avl,zzl,z,f(bl,z+Av2,222,2,f®2,2)'

(6) Core Region 2--Delayed Neutrons

dC
d—tz = V1221, BO , + V22, 05 B, 1 - A;,5C,.

(7) Reflector Region--Group 1

Region radii = 50 to 56 cm Region length = 150 cm
40,3 2,,5,5v1,3 J1,350,4V1,3
dt o (®y,3- ®1,2) 5 # ®1,3
) 03

2
- (21,321 21,35,¢ +D; 3BZ) vy 3% 5.

(B.4)

(B.5)

(B.6)



(8) Reflector Region--Group 2

ddz,2 el 2,,250,3V2,3

-0, - J2,350,4v2,3% 3

dt Vo,3 . Vo,3
- (22,321 2,3, +Dz,3B;) V2,302 3t 21 3 5V2,3P1,3 - (B.8)
b. Heat-transfer Equations

The equations for each Az of the three fuel rods are identical
except for the initial conditions. The increments of the radius of a fuel rod
for analog computation is shown in Fig. 10.

h 5
T
3
i \\o\ Ta
Ts
T
6 T.,
Fig. 10
q: Radial Temperature
r Profile in a Fuel Rod
: B COOLANT
U e e

The analog diagram for an axial seg‘rnent Az is given on Fig. 11.

The equations in a form suitable for analog components are as follows:

CpdrT _[loT ¥T| g o
K t-[rsz 3z |t g WA
(B.9)
Ep or 1/ Tu - Tita +<Ti+1 - 2T; 4 Ti—l> L
K ot' T on h? K
At the surface of the rod,
or _H o -, H -
—= = =Ry, = —(T;-T¢)
r K(TS C) h/Z K 7t (4
(B.10)
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By v : = AQ;
5;(CpTe) +5; (G- C Te) it
T TCJl;TCJZ
———O0— 4] :
T i
O
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O
(=<
O
=
PO oo
e =0

Fig. 11. Analog Diagram of the Heat-transfer Equations

2. Digital Computing Program

a. The Digital Program

The computer part of the hybrid was an IBM 1130 with 8K of
core storage and a disk storage with a capacity of about 350K after
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allowance for the storage of the IBM system and the subroutine library.
This system dictated, to a large extent, the following division of the digital
code into three mainline programs and one subroutine. The program
modules are described below.

B GRTR

The CRTR1 module provides for entering on the console type-
writer the total number of A to D samples per solution, the number of
milliseconds between samples, and the number of axial sections.

Provision is also made for reading from cards into a 20 x 20
array the initial temperatures for each axial section.

The initial reactivities and inlet are also read and stored on
the disk ready for the first run.

c. . CGRTRZ

The CRTRZ2 module is executed over for each run. Potentiom-
eters are set for the initial temperature distribution of each axial section.
The A/D converter is readied, and the analog is started.

di SCRITRE

The CRTRF is the ISS subroutine associated with the A/D con-
mexfer. Every time an A/D complete interrupt is received by the 1130,
this subroutine is executed. The data are stored in blocks of 10 words in
a 10 x 64-word buffer. Half of the buffer is stored on the disk 1 by CRTR2
at the same time that the other half is being filled with data by CRTRF.
When the iteration is done, CRTR3 is then executed.

e: JERTRS3
This module computes the new reactivities from the average
temperatures. The new reactivities are then loaded into the disk memory

together with the inlet temperatures for axial region 1, and a new iteration
is begun by executing CRTR2Z again.

The flow chart for the IBM 1130 is shown on Fig. 12.
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INITIATE CALCULATION

INITIALIZE DISC, READ IN INITIAL
TEMPERATURES, TYPE IN NUMBER OF POINTS

e

SET UP IC DOTS FOR INITIAL TEMPERATURES
CLEAR LINK SET UP CLOCK RESET ANALOG
r START ANALOG J

AFTER EACH A/D CONVERSION

l STORE DATA ON DISK 4,‘———

ISS TO COLLECT DATA IN BUFFER
AREA AND COUNT NUMBER OF
SAMPLES

M IS RUN DONE ? J

YES
L N0 [ is (TERATION DONE? ]
VEs
W- FROM
ANALOG _—ICUMPUTE NEW REACTIVITIES l

——#ﬁ LAST ITERATION ? J
‘YES

END

Fig. 12. Digital-computer Flow Chart
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